Generic AOCS/GNC Techniques & Design Framework for FDIR (GAFE)

Space Engineering and Technology Final Presentation Days (SETFPDS) at ESTEC

Airbus Defence & Space, Astos Solutions GmbH, University Stuttgart (IFR) 18.06.2018

Domenico Reggio

Agenda

- Study Objectives and Team
- GAFE Framework
 - GAFE Methodology
 - GAFE Structural Analysis
 - GAFE Simulator
- Examples
- Summary & Status

Study Objectives and Team

Study Title

Generic AOCS/GNC Techniques & Design Framework for FDIR (GAFE)

Objective

 Develop engineering approach & prototype tools to support AOCS/GNC FDIR design and V&V in early project phases

Study Motivation

- "FDIR engineering for Space Systems is lacking a systematic approach and engineering transparency"
- "FDIR systems design often experiences significant growth in complexity and cost late in the development cycle, causing launch delays or delayed completion of the FDIR capabilities after launch.

Study Team

Initiated by ESA

18 June 2018 3

GAFE Methodology

High Level Flow – GAFE Tool Support

GAFE Methodology Tasks:

- #1: Analysis of Fault Management Requirements
- #2: Extension of Nominal Equipment Set
- #3: FDIR Definition & Implementation
- #4: Simulator Customization & Parameterization
- #5: Definition & Simulation of Test Cases
- #6: Evaluation of FDIR Performance
- #7: Generation of FDIR Documentation

FDIR Concept

GAFE Structural Analysis

Overview

What is a "Structural Analysis"?

 Mathematical method focused on structural relations between known and unknown "states" of a system

What is a "Structural Model"?

RMU

Abstract model of physical or mathematical relationships

MTQ

iF₹ AIRBUS

GAFE Structural Analysis

Usage and Outputs

What is the "Structural Analysis" used for?

To identify if faults in predefined system elements can be detected and/or isolated

What are the outputs?

- AOCS/GNC equipment set to be integrated (redundant, FD/FDI)
- Active AOCS/GNC equipment per mode
- Required analytic redundancy models for FDIR purposes
- Residuals to be computed onboard
- Fault signatures required for identification of faults

Astos

GAFE Structural Analysis

Structural Model Library (5 actuators, 14 analytical modes, 11 sensors)

iF? AIRBUS

Top-Level Architecture

Equipment Module

Generic Equipment Model (GEM)

Serves as "host" for specific equipment models (SEM)

- Behavioural model
 - Generic states with generic functionality
- Fault handling
 - Injection
 - Ejection
 - Persistency
 - Performance impact (noise increase, drift, bias, stale data, random walk, ...)
- Instantiation of Units
 - Number of units via parameter
 - User specifies just the differences

F? AIRBUS

Specific Equipment Models - Library

Sensors

- Magnetometer
- Earth Sensor
- Sun Sensor
- Startracker
- GNSR
- Lidar
- Camera
- Clock
- Rate Measurement Unit
- Accelerometer

Actuators

- Magnetorquer
- Reaction Wheel
- Reaction Control System (Thrusters)

Non-AOCS/GNC Actuators

- Solar Array Drive Mechanism
- Antenna Pointing Mechanism

AOCS/GNC Algorithms Module

AOCS/GNC Algorithms - Concepts

- Modularity on AOCS/GNC Algorithmic "Component" level
 - e.g. rmuMeasProc, oop, nomAcqCtrl, rcsCmd
- Parametric configurability
- Identical interface of all "Components"
 - Data => intra Component
 - Status => for FDIR / OPS
 - States
 - Parameters
- Status Flag concept
 - "isValid" Status Flag from one "Component" to the next
 - Tristate logic: NOTEVAL, OK, NOK
 - "Common" and "Individual" flags

- Systematic collection of all States
 - all States accessible
 - States reset overall, of single Components or even selectable individually (SGM)
- Sampling
 - sample time and offset
 - reset/hold Output and States

Astos Solutions

AOCS/GNC Algorithms – Components Library

Sensor Processing

- Magnetometer
- Earth Sensor
- Sun Sensor
- Startracker
- GNSR
- Lidar
- Camera
- Clock
- Rate Measurement Unit
- Reaction Wheel

Determination functions

- Satellite attitude and rate
- Earth direction
- Sun direction
- Magnetic field and rate,
- Orbit (OOP),
- Earth ephemeris,
- · Reaction Wheel friction estimation
- Relative position and orbital elements (to target)

Controller

- Rate Damping
- Attitude Acquisition and Safe Mode

15

Nominal Mode, ...

Actuator Commanding

- Magnetorquer
- Reaction Wheel
- Reaction Control System (Thrusters)

iF? AIRBUS

FDIR/OPS Module

18 June 2018

Astos FR AIRBUS 16

FDIR/OPS Module – PUS Services

Astos

System Module

This document and its content is the property of Airbus Defence and Space. It shall not be communicated to any third party without the owner's written consent | Airbus Defence and Space Company name]. All rights reserved.

Astos FR AIRBUS

System – System Configuration Manager

Tasks:

Models operational state of OBC

- Handles OBC (re)boots
- Maintains and distributesSystem Configuration
 - Processor module
 - Avionic chain
 - Initial AOCS mode to use
 - Equipment power-cycling
 - Use of context information from non-volatile memory (SGM, RAM)
 - Enable/disable FDIR
 - Next system configuration

System Config	Processor Module	Avionic Chain	Initial AOCS Mode	Units Power Cycling	Use Context Info	Enable FDIR	Next System Config
1	А	Α	ASM	No	Yes	Yes	2
2	Α	В	ASM	No	Yes	Yes	3
3	В	Α	SAME	Yes	Yes	Yes	4
4	В	В	ASM	Yes	No	Yes	5
5	Α	Α	ASM	Yes	No	Yes	6

Yes

No

ASM

В

Α

19

No

Tasks:

- Equipment Configuration using ECT
 - Mode setup
 - Mode transition
 - Reconfiguration
- Unit Health Status
 - Keeps record and handles "unitFailed" notification

20

Scenario & Demonstration Cases

Scenario:

- EarthCARE (from the re-engineered study case):
 - Wakeup in Acquisition & Safe Mode, transition to Nominal Mode

Demonstration Cases:

- Nominal Part: No faults
- Fault Case 1:
 - Fault: Star Tracker Unit 2 Drift
 - Injection time: 4700s & 5450s
- Fault Case 2:
 - Fault: Reaction Control System Thruster Stuck Open
 - Injection times: between 7000s and 9000s (Monte-Carlo)

21

Astos iF? AIRBUS

Nominal Part - No Faults

Nominal Part - No Faults

17-Jun-2018 13:39 17-Jun-2018 13:39

Fault Case 1: Star Tracker Unit 2 - Drift

17-Jun-2018 16:21

18 June 2018 24 17-Jun-2018 13:39

Fault Case 2: RCS - Thruster Stuck Open

17-Jun-2018 17:13

Summary & Status

GAFE Framework

- Ready-to-use for european space industry
- TRL level 3
- Requires MATLAB Release 2016b + Simulink
- Website and Download at: https://gafe.estec.esa.int

Contact Points

- Airbus Defence & Space:
 Domenico Reggio, Domenico.Reggio@airbus.com
- ESA:
 Alvaro Martinez Barrio, Alvaro.Martinez.Barrio@esa.int

Outlook

- Include electrical & communication layers
 RIU, PCDU, MilBus and cross-strappings
- Extend the "libraries" with more analytical models
- Add high-level automatic configuration capabilities
- Upgrade to PUS-C
- Increase automatisation level for postprocessing
- Include event-based fault injection
- ..

Astos Solutions

